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Abstract

The thermocapillary feedback mechanism important at the edge of weld

pools and other materials processes is examined through a model problem� A

pool of liquid with a �at horizontal free surface is bounded on one side by a

vertical solid wall� which is maintained at a cold temperature to unit depth�

and at a warmer temperature below� far away the �uid is at the warmer

temperature� Surface tension is a decreasing function of temperature� so that

the surface thermal gradient drives �ow toward the corner� When convection

is vigorous� the �ow compresses the thermal gradient which is driving the �ow�

this positive feedback results in small local length scales and high velocities

near the corner� This problem is examined through a detailed scaling analysis

and through numerical simulation for a range of parameters� The results show

that for vigorous convection� the �ow in the cold corner is locally determined�
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I� INTRODUCTION

In the processing of materials� often material is melted and resolidi�ed� Several practical
processes� e�g�� welding� �oat�zone puri�cation� and Czochralski crystal growth� involve a
pool of moltenmetal with a free surface� with strong temperature gradients along the surface�
Convection in the molten metal is typically vigorous and signi�cant to the results of the
process� in that it a�ects the size and shape of the pool� the heat transfer� the mixing
of solutes� and ultimately the microstructure of the �nished product� The forces driving
the convection include the variation of surface tension with temperature along the surface
�thermocapillary forces�� buoyancy forces due to thermal �and	or solutal� expansion� and
electromagnetic forces in the case of arc welding or electron beam welding� However� in many
cases �e�g� laser welding� thermocapillary forces predominate� and even in cases where other
forces are stronger overall� there are still important regions where the thermocapillary forces
may be dominant �i�e�� cold corner regions
 see Chen �����

Consequently� there have been many theoretical studies of thermocapillary �ows� pri�
marily numerical� and a few analytical �reviews are given by �
� and ����� Cowley and Davis
��� analyzed the �two�dimensional� thermocapillary �ow near a hot wall for vigorous� viscous
�ow �large Marangoni and Prandtl numbers�� here the �uid �ows up the wall then turns
and �ows away along the free surface� so this would be called the hot corner problem� The
numerical studies of Zebib et� al� ��� of �ow in a rectangular pool �
�D� with one hot and one
cold wall� however� show that for moderate to small Prandtl numbers �e�g�� metals� the cold
corner region has by far the strongest e�ect on both the �ow and the heat transfer� This
result gives a di�erent overall scaling than that of Cowley and Davis� although their local
hot�corner scaling was validated� Other numerical studies �e�g�� ����� when a su�ciently �ne
mesh is used� show similar strong �ow at the cold corner� Great care is necessary to insure
that the small length scales of this corner region are resolved numerically� this is not always
the case �as noted in �����

Therefore� it is imperative to develop a theoretical understanding of the dynamics of the
cold corner region� where the �ow along the free surface toward the cold wall compresses
the thermal gradient� thereby enhancing the �ow in a sort of positive feedback� Being a
region of intense heat transfer� the details of the �ow can a�ect the shape of the melt pool
and the cooling rate� thus the microstructure� of the material� At the least� the dependence
of the length� velocity and thermal scales on the parameters �Marangoni number� Prandtl
number� Capillary number� needs to be understood in order for realistic numerical models
to be designed in a way to resolve the details in this important region� But as yet� such
understanding is lacking� In fact� in a recent review� Chen ��� states� �It would seem then
that the structure of the cold corner �ow is one of the most critical issues to be studied in
the future��

To examine the feedback mechanism of the cold corner region without all the complica�
tions of the complex geometry� phase change� and time dependence inherent in real materials
processing applications� a simpli�ed model problem is considered� much like that of Cowley
and Davis ���� as follows� A pool of a pure liquid has a horizontal free surface ending at
a vertical wall� and the upper section of the wall is cooled� the resulting thermal gradient
drives thermocapillary �ow towards the cold corner� The depth and width of the pool are
assumed large compared to all local length scales �which is reasonable for practical situa�






tions with high Marangoni numbers�� so the pool appears semi�in�nite both horizontally
and vertically�

This simpli�ed problem is still complicated� and contains most of the features of the cold
corner regions in practical processes� e�g�� welds� The missing features are phase change
and surface de�ection� both of which could modify the geometry locally �curved wall and
surface�� but are unlikely to change the basic structure and scaling�

The structure of the thermal and �ow �elds is examined below both through a detailed
scaling analysis to determine the dependence on the parameters� and through numerical
simulation� The numerical results validate the scaling� and for vigorous convection the cold
corner �ow is found to be locally determined� Hence these scalings may be useful to estimate
local resolution requirements for more realistic numerical models�

II� PROBLEM STATMENT

A pool of incompressible Newtonian �uid is bounded on the left by a vertical solid wall�
with the upper portion of the wall �to depth d� maintained at a cold temperature Tc� while
the rest of the wall is at the hot ambient temperature Th of the undisturbed �uid far from
the corner� �See Fig� ��� Above the horizontal free surface of the liquid is an inviscid�
nonconducting gas� Surface tension is assumed strong enough to keep the free surface �at
�small Capillary number�� but with surface tension variations due to a linear dependence on
temperature� The resulting �ow is assumed to be two�dimensional and steady�

Then the equations governing the thermocapillary convection in the cold corner are
conservation of mass� momentum� and energy


r � u � �

�u � ru � �r p� �r�
u

�cp u � rT � kr� T

with the boundary conditions


at y � � 
 Ty � �� v � �� �uy � �Tx

at x � � 
 T �
�
Tc� y � d
Th� y � d

� u � v � �

as x� y �� 
 T � Th� u� v � �

Here u is the velocity vector with components u and v in the x �horizontally rightward�
and y �vertically downward� directions� p is pressure� T is temperature� � is density� � is
viscosity� cp is speci�c heat� k is thermal conductivity� and the surface tension is assumed
to be of the form � � �c � ��T � Tc�� with � a positive constant� The boundary conditions
specify that the wall is piecewise isothermal with no �uid slip� and the �at free surface is
thermally insulated� with thermocapillary forcing�

The equations can be nondimensionalized by scaling lengths by d� temperature di�erences
by �T � Th � Tc� velocities by us � ��T��� and pressures by ps � �us�d� The resulting
dimensionless equations are
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r � u � � ���

Ru � ru � �r p�r�
u �
�

M u � rT � r� T ���

with the boundary conditions


at y � � 
 Ty � �� v � �� uy � Tx ���

at x � � 
 T �
�
��� y � �
�� y � �

� u � v � � ���

as x� y �� 
 T � �� u� v � � ���

where u� etc� from here on denote the dimensionless quantities� The two dimensionless
parameters are the Marangoni number M � usd�� and the Reynolds number R � usd�	�
where � � k��cp is the thermal di�usivity and 	 � ��� is the kinematic viscosity� Their
ratio gives the Prandtl number
 P � 	�� � M�R�

For the numerical solutions below� it is convenient to eliminate the pressure by adopting
a stream�function	vorticity formulation for the �ow


Ru � r
 � r� 
 ���


 � �r�� ���

u � �y � v � ��x ���

where � is the stream function and 
 is the vorticity� with the �ow boundary conditions

at y � � 
 � � �x � �� 
 � �Tx ����

at x � � 
 � � �x � �y � � ����

as x� y �� 
 �� 
 � � ��
�

With the assumption of small Capillary number� the resulting small surface de�ection
can be determined as a small perturbation to the �at interface from the dimensionless normal
stress condition at the surface


�p� 
vy � Ca��hxx ����

where Ca � ��T�� is the Capillary number� and the de�ection h is taken positive upward
�in the �y direction�� �Note that for the large Reynolds numbers considered in ���� the
viscous stress 
vy becomes negligible� and ���� reduces to their ���b��� The contact line on
the wall �and on the outer boundary introduced for numerical solutions� is assumed pinned
�h � ��� and volume is conserved globally to determine the constant reference pressure level�

III� SCALING ANALYSIS AND REGIMES OF BEHAVIOR

The structure of the thermal and �ow �elds can take on di�erent forms� depending on
the values of the two governing parameters� the Marangoni number M � which measures the
importance of thermal convection relative to thermal di�usion� and the Prandtl number
P � the ratio of viscous to thermal di�usion for the material� �Equivalently� one could use
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Reynolds number R � M�P as the second parameter�� Here we derive the appropriate
dimensionless scales for the four di�erent asymptotic regimes of behavior�

This scaling is based on the assumption that the thermal gradient along the free surface
can be characterized by a single length scale l� which is comparable to or smaller than the
imposed vertical scale of unity� In addition� let the characteristic velocity scale along the
surface be U � and let � be the vertical length scale of the velocity shear at the surface� Then
the thermocapillary stress condition ��c� scales as


U

�
�

�

l
����

and by continuity the vertical velocity scale in the sheared region near the surface is V �
U��l� In this region� the surface vorticity scales as ��l by ���� and the energy and vorticity
equations ��� �� scale as


M

�
U

l
�
U�

l

�
�

�

l�
� � ����

R
�
U

l�
�
U

l�

�
�

�

l�
�

�

l��
����

where horizontal terms precede vertical terms� and the vertical thermal gradient is assumed
to scale as unity� the imposed vertical length scale� Hence for scaling purposes� vertical
convection terms can be neglected�

For small enough M � thermal convection is negligible� implying l � � by ����� and the
thermal �eld is essentially conductive� decoupled from the �ow� But for large enough M
convection becomes important� and the strong surface �ow toward the wall compresses the
thermal gradient along the surface� which in turn strengthens the local driving force for the
�ow� This reduces the horizontal thermal length scale l to the point that thermal di�usion
away from the wall balances convection toward the wall� so the local e�ective Marangoni
number is order unity
 Meff � MUl � �� Then the externally imposed length scale
�dimensional d above� is no longer directly relevant to the compressed cold corner region�
�In this case� the local importance of inertia is better indicated by whether viscous or thermal
di�usion is more e�cient� i�e�� by P rather than R��

Similarly� for small enough R� inertia is negligible everywhere� implying � � l� and the
�ow is dominated by viscous forces� For large enough R inertial forces become dominant
and viscous e�ects are con�ned to boundary layers of thickness � � l along the surface and
the wall� where the local e�ective Reynolds number Reff � RU���l � �� �Both layers are of
comparable thickness because the pressure �eld outside the layers has the same length scale
in both directions�� Hence the scaling for each regime is determined�

When the thermal �eld is conductive and the �ow �eld dominated by viscous forces
�M � � and R � �� or P � M�� all three scales are of order unity
 l � �� � � ��
U � �� Thus in this case �only�� the scaling used in the nondimensionalization is appropriate
everywhere� Within this regime� the solution is fully two�dimensional with no �ne structure
and is nearly independent of the parameters �rather� it is determined by the boundary
conditions��

For the conductive case with inertial �ow� the additional resistance of inertia reduces
both the velocity scale and the viscous length scale
 U � � � R�

�

� �while l � � still�� This
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reduced velocity also reduces the e�ective Marangoni number� such that this regime applies
when M � R

�

� � or M � P�
�

� � with R � �� or P � M � �Note that this gives the same
boundary layer scaling as Zebib et al� ��� except for an error on the passive wall layers� as
pointed out by Chen ����� Here the vorticity generated by the shear stresses on the surface
and the wall are con�ned to the thin boundary layers�

When thermal convection is important but inertia is not �M � � and P � ��� surface
thermal variations are compressed to a narrow region� beyond which the thermocapillary
forcing is small� so � � l � M�� and U � �� However� as the numerical results show� the
strong inward �ow along the surface turns downward and away from the no�slip wall �and
weakens rapidly with distance�� such that no thermal boundary layer is formed on the wall�
rather� vertical and horizontal variations are comparable�

The most important regime for materials processing is where thermal convection is im�
portant and P � �� the latter being generally true for metals� In this case� within the
compressed thermal region there are thin viscous boundary layers along the surface and
wall� Then l � M��P�

�

� � � � M��� and U � P
�

� � i�e�� the additional resistance of inertia
decreases the velocity scale and thus increases the thermal length scale by a factor of P

�

� rel�
ative to the purely viscous case� Again the reduced velocity changes the thermal convection
scaling� and large Marangoni number here means M � P�

�

� �
The approximate divisions between the four asymptotic regimes and their scalings are

summarized in Table I� For a material of small P � as M is increased from zero� at �rst
the temperature �eld is conductive and the �ow dominated by viscous forces� then the �ow
becomes primarily inertial and viscous boundary layers form� and �nally thermal convection
becomes important� shrinking all local length scales in the corner�

A� Viscous Corner Region

There is a region in the corner� for any M and P � where viscous stresses from the wall
limit the �ow and both inertia and thermal convection are negligible� so the temperature
along the surface is approximately linear� Locally the thermocapillary stress is constant�
and the �ow is given by a similarity solution � ���� although the published version contains
errors��

If the �at free surface makes an angle � with the solid wall� then a constant unit surface
shear stress toward the corner gives

��r� 
� �
r�

�

��sin 
�� 
���cos 

 � ��� �cos 
�� ���sin 

 � 

��

sin 
�� 
� cos 
�

where r and 
 are polar coordinates� with 
 increasing from the wall to the free surface �see
Fig� ��� In the particular case here� � � �
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p� p� �
�

�
ln r

where �r and �
 are unit vectors in the coordinate directions� and p� is some reference pressure�
This is the form of the �ow in the cold corner on the smallest length scale� where all the

above �ow quantities would be multiplied by the surface stress Tx��� �� �which scales as ��l��
The velocity grows linearly with distance r from the corner and the local length scale is r�
which can be used to estimate the range over which the similarity solution is applicable�
For the two viscous��ow regimes mentioned above� the linear�temperature approximation
requires r � l� so for the conductive regime r � � while for the convective regime r �M���
For the two inertial��ow regimes� the more restrictive condition is that locally inertia is
negligible� and the local velocity scale is r�l� so we must have r� � l�R� in the conductive

regime this implies r � R�
�

� � while in the convective regime the range is r � P
�

�M��� or
r�l � P

�

� � These scales are also summarized in Table I�
This gives an estimate of the resolution required for a numerical model to resolve all

the details of the cold corner �ow� Because of the corner singularity in p and 
� spectral
methods would be inappropriate� instead� �nite�di�erence or �nite�element methods could
be used� Then provided that the �rst grid point is in the similarity range� no details of the
velocity �eld in the corner should be lost� In addition� the similarity form may be useful as
a �matching� type boundary condition for the singularity at the origin�

IV� NUMERICAL METHODS

While the idealized problem considers the cold corner in isolation from other boundaries
and e�ects� for computational purposes a �nite domain was required� A square domain was
used� each side �ve times the imposed thermal length scale� It was hoped this would be
large enough so that the �outer� boundaries would have only small e�ects on the cold corner
feedback mechanism� as the thermal gradient along the surface decays quickly with distance�
These boundaries were made isothermal� impenetrable� and shear�free� and hence constrain
both the thermal and �ow �elds� enforcing recirculation and preventing long thermal plumes�
�Diagonal plumes were seen to form in calculations for the R � � case using a Green�s
function method and di�erent outer boundary conditions� see �����

To calculate the steady state for various values of M and P � the time�dependent �nite�
di�erence equations were explicitly stepped in time until steady state was reached� At each
time step� the convection�di�usion equations for temperature ��� and vorticity ��� were
solved by the Alternating�Direction Implicit �ADI� scheme ���� where the convective terms
were evaluated by the Eulerian�Lagrangian Method �ELM� see ����� using the velocity �eld
from the �old� stream function and upwind bilinear interpolation� �The ADI method avoids
di�usive numerical instability� so the time step is only limited by convective stability�� After
several time steps� the stream function was updated by solving the Poisson equation ��� using
Gauss�Seidel iteration with Successive Over�Relaxation �SOR�� Steady state was assumed
when the pointwise RMS change in stream function fell below a certain tolerance�

A non�uniform Cartesian grid was employed� Then using a three�point di�erence scheme�
only �rst�order accuracy is possible for the second derivatives� the di�erencing employed
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becomes second�order accurate in the limit of uniform spacing� Speci�cally� the following
one�dimensional di�erence formulae were used �derived from Taylor series�


f � �
�dx�

dx��dx� � dx��
f� �

dx� � dx�
dx�dx�

f �
dx�

dx��dx� � dx��
f�

�O�f ���dx�dx��

f �� �



dx��dx� � dx��
f� �

�


dx�dx�
f �




dx��dx� � dx��
f�

�O�f ����dx� � dx���

where dx� and dx� are the distances to the grid points below and above the current point�
with f� and f� the corresponding values of the function�

The grid spacing in each direction was chosen to have a closely packed region of uniform
spacing by the surface or wall� a widely spaced region of uniform spacing near the outer
boundaries� and in between a region of smoothly �exponentially� changing spacing� This
was generated by applying the following function to a uniform grid �in �� say�


x

xmax
� f��� �

�

D
�

�	

	�
ln r �� � 	 � � ��
ln r �� � ��� � ��� �r

�������������� � ��� �� 	 � � ��
D � r ln r ��� ��� �� 	 � 	 �

where r is the ratio of outer spacing to inner spacing� �� and �� are parameters delineating
the three regions� D � �r� ����� � ��� � ln r�r� ��� r��� is the common denominator� and
xmax is the position of the outer boundary� Table II shows the grid spacing used in each
case�

It was found that� even when the time step easily satis�ed convective stability require�
ments� nonetheless numerical instabilities sometimes developed in the vorticity near the wall�
Several di�erent formulations for the wall boundary condition on vorticity were tried� to no
avail� However� by under�relaxing the changes in wall vorticity� only during the initial ad�
justment period� the instability was eliminated� The formula used to calculate the vorticity
at the wall �without under�relaxation� from the stream function is


� �

��� ����

x�� � x��
� O�����x��

where subscripts �� �� and 
 refer to the wall and the �rst two grid points� While only
�rst�order� this formulation is independent of �� and thus avoids re�using the boundary
condition for ��

V� RESULTS AND DISCUSSION

Numerical solutions were calculated for three di�erent Prandtl numbers �P � ����� ��
���� over a wide range of Marangoni numbers� as indicated in Table II� to explore the various
regimes of behavior� A solution representative of the conductive viscous regime is shown in
Fig� 
� �Note
 in all plots� no curve smoothing was used� only straight�line interpolation��
The vorticity decays with distance from the discontinuity in the corner� and the velocity
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is strongest along the free surface� The thermal �eld is close to the conduction solution
for a quarter plane� but is slightly compressed by the outer isothermal boundaries� �The
temperature discontinuity on the wall at y � �� introduced by the boundary conditions�
plays no dynamical role� other than to set an overall thermal length scale��

A convective viscous solution is shown in Fig� �� Vigorous convection along the surface
compresses the surface thermal gradient to a small region� but no thermal boundary layer
forms along the wall� Rather� because the �ow out of the corner is not only downward but
also outward� the �uid cooled by the upper portion of the wall is swept diagonally downward�
away from the warm lower portion of the wall� giving a sort of diagonal thermal plume� �This
diagonal plume e�ect is much clearer with less restrictive outer boundary conditions� as are
possible with a Green�s function approach for R � �� see ���� This e�ect seems due largely
to the direction of the strong convection out of the corner� for smaller P the �ow has very
little outward component�� The vorticity is con�ned to a small region in the corner� where
its distribution is qualitatively similar to the conductive viscous case� The maximum surface
velocity occurs very near the wall� and decays quickly with distance �see Fig� �b��

A conductive solution where inertia is important is shown in Fig� �� with P � ����� The
vorticity is con�ned to relatively thin layers along the surface and the wall� and while the
thermal is virtually the same as in Fig� 
� the surface velocity maximum occurs relatively
close to the corner �see Fig� �b�� �On the large scale� the �ow separates from the wall� giving
a weak counter�circulation at the bottom� not shown��

Fig� � shows a convective inertial solution� again with P � ����� The vorticity generated
on the surface and wall is convected along very thin boundary layers where the �ow is rapid�
qualitatively like a narrow jet impinging on a rigid wall� The surface layer extends only as far
as the compressed thermal gradient� Outside these layers the �ow is slower� but still strong
enough to modify the thermal �eld� Whether a thermal boundary layer would form at higher
M is not clear from these results� but seems likely� �Here R � ���� obtaining convergent
solutions became increasingly di�cult as M was raised� Also� the counter�circulation has
grown to �ll the bottom half of the domain� not shown��

The e�ects of increasing M on surface velocities� temperatures and interface de�ections
�calculated from the small�Ca linearized equation ��� are shown in Fig� � for P � ���
and Fig� � for P � ����� �Surface pro�les for P � � are similar to those for P � �����
The main features are summarized in Fig� �� While the thermal gradient� which forces
the �ow� becomes stronger� it also acts over a decreasing range� localized near the wall�
The result on the �ow is that the surface velocity maximum moves close to the wall� but
the maximum speed remains roughly constant for large P � For small P � increasing inertial
resistance lowers the maximum speed until the thermal gradient grows stronger� The surface
de�ection is upward near the wall� then downward �and may go upward again as necessary
to conserve volume�� with the local maximum moving closer to the wall with increasing M �
and� for small P � becoming overwhelmed by the growing downward de�ection�

The results agree well with the scaling analysis� based on the following comparisons

the wall thermal gradient jTx��� ��j indicates the inverse of the thermal length scale l� the
maximum speed jujmax gives the velocity scale U � and the position xmax of the velocity
maximum indicates the viscous length scale �� Lines of slope � and �� show the expected
behavior of Tx and xmax in the convective regimes� and a line of slope ��

�
in Fig� �c shows

the expected behavior of umax and xmax in the conductive inertial regime for small P �
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elsewhere the quantities are expected to remain roughly constant� The data clearly show
the transitions between the regimes� The scaling estimates of the Marangoni numbers of
transition �see Table I� seem to be consistently low by a numerical factor of roughly 
��
for example� the scaling predicts the transition to convective behavior for large P at about
M � �� while �gures �a�b show the transition at about M � 
��

The assumption that the behavior in the cold corner is locally determined for the con�
vective regimes can be examined by rescaling the results based on the scaling analysis� as
shown in Figure �� For P � ���� the convective viscous solutions locally appear the same�
when rescaled� at least as far as surface velocities and temperatures� and similarly for the
convective inertial solutions with P � ����� �In both cases� the solution that sticks out is
for the lowest M included� for which the transition to fully convective behavior is appar�
ently not complete� For P � ����� solutions for M � ��� ��� and M � ��� ��� had small
separated regions on the wall near the surface that disturbed the local behavior� hence these
were excluded��

VI� CONCLUSIONS

The practical importance of thermocapillary convection in materials processing� along
with the complications inherent in typical processes �e�g� curved interfaces� phase change�
etc��� ensure that numerical simulations will remain one of the main theoretical tools for
understanding such systems� This work predicts� a priori� the resolution requirements for
such numerical models to accurately represent the high heat transfer and rapid velocity
variations in the cold corner region�

The structure of the corner depends on two dimensionless parameters indicating the
driving force for convection and relative importance of viscosity
 the Marangoni number M
�based on the overall temperature di�erence� overall thermal length scale� and material prop�
erties� and the Prandtl number P �a material property�� Hence there are four asymptotic
regimes depending on whether thermal convection and inertial forces are locally important�
For large�P materials �e�g�� organics�� the �ow is dominated by viscous forces� and for large
M the surface thermal variations are compressed� i�e�� the local length scale is decreased �and
heat transfer increased�� For small�P materials �e�g�� metallics�� inertia becomes important
before thermal convection with increasing M � and thin viscous boundary layers form along
the surface and the wall� within the thermal region� When M is large �compared to P������
three levels of length scales must be resolved �overall� thermal� and viscous�� a severe re�
quirement on numerical models� Resolution of �ow details is assured by a grid �ne enough
to reach the self�similar behavior at the corner singularity�

The scaling was derived from a simple problem designed to isolate the feedback mecha�
nism of the cold corner� Numerical calculations �where the corner is necessarily less isolated
due to the �nite domain� illustrate the changing structure of the cold corner and show the
details of the transitions between the asymptotic regimes� The numerical results are con�
sistent with the scaling analysis� In particular� for fully convective �ow the corner behavior
is locally determined� increasing the global Marangoni number merely decreases the local
length scale to give a local e�ective Marangoni number of unity� Hence the boundary con�
ditions on the outer boundaries become irrelevant to the local feedback mechanism in the
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cold corner� and the behavior shown in Fig� � and Fig� � may be considered characteristic�
for low and high P respectively�

One surprising result� in contrast with the hot corner problem of Cowley and Davis ����
is that no thermal boundary layer forms for large P � This di�erence is due to the surface
forcing being limited to a relatively concentrated region in the cold corner� while for the
hot corner the forcing is distributed over an broad region� the horizontal thermal variations
being extended by convection� �For small P � the numerical results are inconclusive about
whether a laminar thermal boundary layer forms for su�ciently large M ��

To compare with the numerical results of Zebib et al� ��� for P � �� note the di�erent
boundary conditions
 their domain had a pool between a hot and a cold no�slip wall� with
an insulated no�slip bottom� Then even when the cold corner was highly compressed� there
were still signi�cant thermal variations along most of the surface due to the hot wall� so
the overall scaling is similar to the conductive inertial case here� And apparently even their
cold corner was modi�ed by the external bulk �ow� for their maximum vorticity scaled as

 
 M���� whereas here 
 
 M � Hence one important question remaining is under what
global conditions can the cold corner be considered locally determined�

In real materials processes� the surface is free to de�ect� and the position and shape of
the solid�liquid interface depends on the thermal �eld� These e�ects greatly complicate the
problem geometrically� yet the dominant dynamic balance should remain that considered
here�
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FIGURES

FIG� �� Problem Formulation	 a liquid quarter
space is bounded above by a �at free surface

subject to thermocapillary forcing� and is bounded on the left by a rigid vertical wall� at tempera


ture Tc to depth d and at the warmer temperature Th below� which is also the ambient temperature

of the undisturbed �uid far away�

FIG� �� Results for P � �

� M � 
��	 isotherms �dark gray�� streamlines �thin� black� and

vorticity contours �light gray� for a numerical solution dominated by thermal di�usion and viscous

forces� The temperature discontinuity on the wall �on the left� is due to the chosen boundary

conditions and plays no dynamical role other than to set the thermal length scale� In contrast� the

vorticity discontinuity where the free surface �top� meets the wall is inherent to the thermocapillary

problem� The bottom and right boundaries �y � �� x � �� constrain the recirculating streamlines�

FIG� �� Results for P � �

� M � �


� detail �
 � x � �� 
 � y � ��	 a convective� viscous

solution� Strong surface �ow compresses the surface thermal gradient into the cold corner� but

no boudary layer forms on the wall� The length scale of vorticity variations is that of the surface

thermal gradient� The maximum velocity occurs on the surface near the wall�

FIG� �� Results for P � 
�
�� M � �
� detail �
 � x � �� 
 � y � ��	 conductive� with inertial

�ow� Vorticity is convected in fairly thin layers on the surface and the wall�

FIG� �� Results for P � 
�
�� M � �
� 


� detail �
 � x � 
��� 
 � y � 
���	 a convective� in


ertial solution� Within the compressed thermal �eld� vorticity is con�ned to thin viscous boundary

layers�

FIG� �� Surface Pro�les� P � �

� M � �� �
� �

� �


	 �a� Surface temperature ��T � as

function of x� For large M � outside the corner the temperature is an order of magnitude smaller

than the wall temperature and nearly linear� �b� Surface speed ��u�� The corner length scale

decreases �but the velocity scale does not� with increasing M � �c� Free
surface de�ection	 scaled

surface height �h�Ca� from the small
Ca linearized equation ���

FIG� �� Surface Pro�les� P � 
�
�� M � 
�
�� 
��� �� �
� �

� �


� �
�


	 �a� Surface

temperature� Again� for large M the temperature outside the corner is an order of magnitude

smaller than the wall temperature� �b� Surface speed� Both the corner length scale and the

velocity scale decrease with increasing M � �c� Free
surface de�ection �from ����

FIG� �� Summary of Numerical Scales	 wall temperature gradient jTxj �diamonds�� maximum

speed jujmax �triangles�� and position xmax of maximum speed �stars�� as functions of Marangoni

numberM � from numerical solutions� Lines of slope �� 
�� and 
��� are shown for comparison with

scaling analysis� �a� P � �

� �b� P � �� �c� P � 
�
��

��



FIG� �� Rescaled Surface Pro�les	 temperature and velocity pro�les for convective regimes�

with x axis rescaled by M � The collapse of the data indicates the behavior in the cold corner is

locally determined� �a� viscous case	 P � �

� M � �

� �

� �

� �

� �


� �b� inertial case	

P � 
�
�� M � �


� �


� �


� �
�


� �
�


�
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TABLES

TABLE I� Summary of theoretical scales in the cold corner	 thermal length l� viscous thickness

�� surface speed U � and bound r on extent of viscous corner similarity solution�

Regime Scales

Type Limits l � U r

cond� visc� M � �� P �M � � � �

conv� visc� M � �� P � � M�� M�� � M��

cond� inert� P �M � P�
�

� � P � � � M�
�

�P
�

� M�
�

�P
�

� M�
�

�P
�

�

conv� inert� M � P�
�

� � P � � M��P�
�

� M�� P
�

� M��P
�

�

��



TABLE II� Grid spacing used in computations� For each P and M the total number of grid

points �in each direction� including boundaries� is npts� the minimum spacing is hmin �where the

whole domain is � units wide�� and the ratio r of maximum to minimum spacing is hmax�hmin�

For large M � the minimum spacing should be inversely proportional to M to preserve resolution

of corner details� i�e�� M hmin should be roughly constant�

P M npts hmin hmax�hmin M hmin
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Figures for �Thermocapillary Flow Near a Cold Wall�

David Canright
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Ty = 0,  v = 0,  µ uy = γ
T
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Figure �� Problem Formulation� a liquid quarter�space is bounded above by a �at free surface subject to
thermocapillary forcing� and is bounded on the left by a rigid vertical wall� at temperature Tc to depth d
and at the warmer temperature Th below� which is also the ambient temperature of the undisturbed �uid
far away�
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M = 0.1,  P = 1000 5
0

1

5

Figure �� Results for P � ���� M � ���� isotherms 	dark gray
� streamlines 	thin� black
 and vorticity
contours 	light gray
 for a numerical solution dominated by thermal di�usion and viscous forces� The
temperature discontinuity on the wall 	on the left
 is due to the chosen boundary conditions and plays no
dynamical role other than to set the thermal length scale� In contrast� the vorticity discontinuity where
the free surface 	top
 meets the wall is inherent to the thermocapillary problem� The bottom and right
boundaries 	y � �� x � �
 constrain the recirculating streamlines�
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M = 1000,  P = 100  (detail)0
0

  2

2

1

Figure 
� Results for P � ���� M � ����� detail 	� � x � �� � � y � �
� a convective� viscous solution�
Strong surface �ow compresses the surface thermal gradient into the cold corner� but no boudary layer forms
on the wall� The length scale of vorticity variations is that of the surface thermal gradient� The maximum
velocity occurs on the surface near the wall�






M = 30,  P = 0.01 (detail)0 2
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1

2

Figure �� Results for P � ����� M � 
�� detail 	� � x � �� � � y � �
� conductive� with inertial �ow�
Vorticity is convected in fairly thin layers on the surface and the wall�
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0.5M = 10,000,  P = 0.01 (detail)

Figure �� Results for P � ����� M � ��� ���� detail 	� � x � ���� � � y � ���
� a convective� inertial
solution� Within the compressed thermal �eld� vorticity is con�ned to thin viscous boundary layers�
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Figure �� Surface Pro�les� P � ���� M � �� ��� ���� ����� 	a
 Surface temperature 	�T 
 as function of x�
For largeM � outside the corner the temperature is an order of magnitude smaller than the wall temperature
and nearly linear�
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Figure �� 	b
 Surface speed 	�u
� The corner length scale decreases 	but the velocity scale does not
 with
increasing M �
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Figure �� 	c
 Free�surface de�ection� scaled surface height 	h�Ca
 from the small�Ca linearized equation
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Figure �� Surface Pro�les� P � �����M � ����� ���� �� ��� ���� ����� ������� 	a
 Surface temperature� Again�
for large M the temperature outside the corner is an order of magnitude smaller than the wall temperature�
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Figure �� 	b
 Surface speed� Both the corner length scale and the velocity scale decrease with increasingM �
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Figure �� 	c
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Figure �� Summary of Numerical Scales� wall temperature gradient jTxj 	diamonds
� maximum speed jujmax
	triangles
� and position xmax of maximum speed 	stars
� as functions of Marangoni number M � from
numerical solutions� Lines of slope �� ��� and ���
 are shown for comparison with scaling analysis� 	a

P � ����

��



5 10. 50. 100. 500.1000.

0.05

0.1

0.5

5

10.

Tx

umax

xmax

M

P = 1

Figure �� 	b
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Figure �� Rescaled Surface Pro�les� temperature and velocity pro�les for convective regimes� with x axis
rescaled by M � The collapse of the data indicates the behavior in the cold corner is locally determined� 	a

viscous case� P � ���� M � ���� 
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